

Update on sPHENIX

Haiwang Yu (New Mexico State University)

for sPHENIX Collaboration

Santa Fe Jets and Heavy Flavor Workshop

February 14, 2017

Proposed sPHENIX detector

- Hermetic EMCal + HCal
 - ❖ Jet relatively directly comparable with LHC
- Precise and fast tracking
 - ❖ Time Projection Chamber (TPC)
 - Silicon strip intermediate tracker (INTT)
 - Monolithic Active Pixel Sensor (MAPS)
- ❖ High speed DAQ: 15kHz
 - ❖ 100 billion MB Au+Au in 22 weeks

Calorimetry: Design and Simulation

Physics GoalDetector RequirementJets/Fragmentation Functions/jet
substructureSingle particle Resolution:
 $\sigma/E < 100\%/VE$ Distinguish Upsilon StatesGood e/π separationHF jet taggingElectron ID

NOTES AND ADDRESS OF THE PARTY OF THE PARTY

Beam

Beam Test in FNL

GEANT4

Calorimetry: Beam Test, EMCal

Beam Test in FNL

- Good consistency with simulation
- Performance satisfies requirement
- Paper coming soon

Physics Goal	Detector Requirement
Jets/Fragmentation Functions/jet substructure	Single particle Resolution: σ/E < 100%/√E
Distinguish Upsilon States	Good e/ π separation
HF jet tagging	Electron I D

Calorimetry: Beam Test, HCal

Physics Goal	Detector Requirement
Jets/Fragmentation Functions/jet substructure	Single particle Resolution: σ/E < 100%/VE
Distinguish Upsilon States	Good e/ π separation
HF jet tagging	Electron ID

Tracking

Physics Goal	Detector Requirement
Fragmentation Functions	Excellent Momentum Resolution: $dp/p \sim 0.2\%p to > 40 GeV/c$
Jet Substructure	Excellent track pattern recognition
Distinguish Upsilon States	Mass resolution: $\sigma_M < 100 \text{MeV/c}^2$
HF jet tagging	Precise DCA resolution σ_{DCA} < 100 μm

GEANT4

Tracking

Physics Goal	Detector Requirement
Fragmentation Functions	Excellent Momentum Resolution: $dp/p \sim 0.2\%p to > 40 GeV/c$
Jet Substructure	Excellent track pattern recognition
Distinguish Upsilon States	Mass resolution: $\sigma_M < 100 \text{MeV/c}^2$
HF jet tagging	Precise DCA resolution σ_{DCA} < 100 μm

^{*}Simulation results in Sep. 2016

Jet at sPHENIX

- Jets interact minimally until their virtuality ~ medium virtuality
 - Jets from the highest collision energies are mostly vacuum (pQCD) dominated
 - Measure low E_T jets at RHIC energies!
- Sample ~100 billion Au+Au events in 1 year
 - 10⁷ jets > 20 GeV
 - 10⁶ jets > 30 GeV
 - 80% are dijet events
 - 10^4 direct $\gamma > 20$ GeV
- Required Detector Performance
 - Single particle resolution: $\sigma_{E}/E < 100\%/\sqrt{E}$
 - Jet: $\sigma_E/E < 120(150)\%/VE$ in p+p(Au+Au)
 - Photon Energy resolution $\sigma_F/E<15\%/VE$
 - $dp/p \sim 0.2\% p \text{ to > } 40 \text{ GeV/}$

sPHENIX Jet Reconstruction Performance

- Anti-k_T method, FastJet Package
- Full GEANT4 simulation for p+p for detector response
- Fast simulation for Au+Au for UE effect
 - Background subtracted
 - Method based on ATALAS method, <u>arXiv:1203.1353</u>
- Full GEANT4 simulation for Au+Au combined with knowledge from beam test will be used to evaluate the performance of the background subtraction
 - jet energy measurements
 - photon isolation
 - calorimeter clustering

γ jet

- γ jet events are the "golden channel" for the calibration of initial quark energy
- Simulation of γ -jet events with PYTHIA
 - Compare energy clustered into jet versus photon
 - Effect of detector resolution
- Performance with heavy ion background will be quantified in the future

$$X_{J\gamma} = \frac{p_T^{\gamma}}{p_T^{jet}}$$

 γ tagged Jet FF, expected relative statistical uncertainty with 10k γ jet events.

b-jet

- b-jet: unique energy loss signatures due to large mass (4.2GeV/c²)
- b-jet at RHIC:
 - Reconstruct jet at energy as low as 15 GeV, where the quark mass is more important for the energy loss mechanisms
 - Main process is $g+g \rightarrow b+b$ or $g+b \rightarrow g+b$.
- b-jet tagging at sPHENIX:
 - Very good DCA resolution (25 μ m for p_T 1-2 GeV/c) compared with B, D meson life time.
 - Acceptable DCA tail with preliminary HIJING embedding simulation.
 - Various tagging methods.

b-jet tagging: Full GEANT4 Simulation for p+p and Au+Au

Input:

- p+p jetty event sample simulated in PYTHIA8 hard-QCD mode, jets with minimal pT of 20 GeV
- PYTHIA 8 20 GeV jets embedded into 0-4fm central HIJING events to study b-jet tagging in central Au+Au
 collisions
- Initial b-jet, I-jet cross-section from PYTHIA 8 simulation are with good consistency with previous PHENIX paper/FONLL calculation. This will be used to calculate the b-jet purity

Tracker: Geant4 used to simulate response of tracking detector

Reconstruction:

- Hough Transformation based pattern recognition
- GenFit2 based track fitting and DCA extrapolation.
- RAVE based vertexing

b-jet tagging: Impact Parameter Method

Reconstruction:

- Hough Transformation based pattern recognition
- GenFit2 based track fitting and DCA extrapolation.
- Using RAVE in single vertexing mode for vertexing
- DCA_{xy} and DCA_z extrapolated with regarding to reconstructed vertex

• Define
$$S_{DCA} = \sqrt{\left(\frac{DCA_{xy}}{\sigma_{DCA_{xy}}}\right)^2 + \left(\frac{DCA_z}{\sigma_{DCA_z}}\right)^2}$$

- Sign of S_{DCA} defined as sign of *DCA Vector* · *Jet Vector*
- Make different S_{DCA} cut for largest, second largest, third largest S_{DCA} track in a jet cone.
- From the efficiency vs. S_{DCA,min} for l-jet, c-jet and b-jet, calculate l-jet/c-jet efficiency vs b-jet efficiency.
- Calculate b-jet purity vs. tagging efficiency based on initial ratio from Pythia.

b-jet tagging: Impact Parameter Method

Reconstruction:

- Hough Transformation based pattern recognition
- GenFit2 based track fitting and DCA extrapolation.
- Using RAVE in single vertexing mode for vertexing
- DCA_{xy} and DCA_z extrapolated with regarding to reconstructed vertex

• Define
$$S_{DCA} = \sqrt{\left(\frac{DCA_{xy}}{\sigma_{DCA_{xy}}}\right)^2 + \left(\frac{DCA_z}{\sigma_{DCA_z}}\right)^2}$$

- Sign of S_{DCA} defined as sign of *DCA Vector Jet Vector*
- Make different S_{DCA} cut for largest, second largest, third largest S_{DCA} track in a jet cone.
- From the efficiency vs. S_{DCA,min} for l-jet, c-jet and b-jet, calculate l-jet/c-jet efficiency vs b-jet efficiency.
- Calculate b-jet purity vs. tagging efficiency based on initial ratio from Pythia.

b-jet tagging: Impact Parameter Method

Reconstruction:

- Hough Transformation based pattern recognition
- GenFit2 based track fitting and DCA extrapolation.
- Using RAVE in single vertexing mode for vertexing
- DCA_{xy} and DCA_z extrapolated with regarding to reconstructed vertex

• Define
$$S_{DCA} = \sqrt{\left(\frac{DCA_{xy}}{\sigma_{DCA_{xy}}}\right)^2 + \left(\frac{DCA_z}{\sigma_{DCA_z}}\right)^2}$$

- Sign of S_{DCA} defined as sign of *DCA Vector* · *Jet Vector*
- Make different S_{DCA} cut for largest, second largest, third largest S_{DCA} track in a jet cone.
- From the efficiency vs. S_{DCA,min} for l-jet, c-jet and b-jet, calculate l-jet/c-jet efficiency vs b-jet efficiency.
- Calculate b-jet purity vs. tagging efficiency based on initial ratio from Pythia.

b-jet tagging: Secondary Vertex Method

- Running RAVE first in single vertexing mode to reconstruct primary vertex (PV).
- Running RAVE with tracks in jet cones in multiple vertexing mode to reconstruct secondary vertices (SV).
- Make cut on sigmalized distance between PV and SV.
- Calculate b-jet purity vs. tagging efficiency as shown below

b-jet tagging: Secondary Vertex Method

- Running RAVE first in single vertexing mode to reconstruct primary vertex (PV).
- Running RAVE with tracks in jet cones in multiple vertexing mode to reconstruct secondary vertices (SV).
- Make cut on sigmalized distance between PV and SV.
- Calculate b-jet purity vs. tagging efficiency as shown below

$B \longrightarrow D^0 \longrightarrow K \pi$

- $D^0 \longrightarrow K \pi$
- Fast simulation package:
- 1) Sample event vtx distributions
- 2) Throw signal (D0, B) or background (pi,K,p from Hijing) tracks, decay if needed
- 3) Smear the track origin with (DCAxy, DCAz) 2D distributions
- 4) Smear the momentum according to the momentum resolution
- 5) Full reconstructed helices -> reconstruct secondary vertex
- 6) Calculate the signal efficiency or background accept-rate
- Analysis method similar as <u>arXiv:1701.06060</u> (STAR)

FastSim

$B \longrightarrow D^0 \longrightarrow K \pi$

- $D^0 \longrightarrow K \pi$
- Fast simulation package:
- 1) Sample event vtx distributions
- 2) Throw signal (D0, B) or background (pi,K,p from Hijing) tracks, decay if needed
- 3) Smear the track origin with (DCAxy, DCAz) 2D distributions
- 4) Smear the momentum according to the momentum resolution
- 5) Full reconstructed helices -> reconstruct secondary vertex
- 6) Calculate the signal efficiency or background accept-rate
- Analysis method similar as arXiv:1701.06060 (STAR)
- Calculate expected statistical uncertainty of prompt/non-prompt D R_{CP} and V_2

Upsilon \rightarrow e⁺+e⁻

- Upsilons provide an excellent probe for studying the screening length in the QGP
- eID: 100:1 pion rejection @ 90% electron eff. in Au+Au
 - Energy matching
 - Shower shape
- Tracking momentum resolution good enough to resolve three γ states
- Combinatorial background shape taken from PHENIX π^0 spectra in Au+Au with eID rejection factor
 - Could be subtracted by mixing events
- Correlated background (bottom, charm semi-leptonic decays and DY) shape predicted by PYTHIA and scaled to PHENIX charm and bottom cross-section in Au+Au

Upsilon $\rightarrow e^++e^-$

- Upsilons provide an excellent probe for studying the screening length in the QGP
- eID: 100:1 pion rejection @ 90% electron eff. in Au+Au
 - Energy matching
 - Shower shape
- Tracking momentum resolution good enough to resolve three Υ states
- Combinatorial background shape taken from PHENIX π^0 spectra in Au+Au with eID rejection factor
 - Could be subtracted by mixing events
- Correlated background (bottom, charm semi-leptonic decays and DY) shape predicted by PYTHIA and scaled to PHENIX charm and bottom cross-section in Au+Au
- Updated results with more detailed eID rejection and more sophisticated correlated background will be available soon.

2016 for sPHENIX

- ✓ Collaboration formed (Dec 2015)
- ✓ Successful magnet tests
- ✓ Successful Test Beam of calorimeter system
- ✓ Tracking system more defined: TPC + INTT + MAPS
- ✓ Improved simulations
- ✓ CD-0! Approve Mission Need
 - DOE project phase: Initiation

Summary and Outlook

- ❖ sPHENIX Collaboration: 62 institutions, 235 collaborators & growing
- sPHENIX obtained CD-0 and working toward next stage
- ❖ Successful test beam in 2016 and new high eta test beam going on
- Tracking system more defined
 - ❖ MAPS, INTT, TPC
- ❖ Topical groups studying the physics goals with more sophisticated simulations
 - Jet Structure
 - Heavy Flavor Jet
 - Upsilon
 - Cold QCD

Backups

Tracking Subsystems

MAPS

R&D for the sPHENIX MAPS inner tracker [M. Liu]

- 3 layers Si sensors
- Based on ALICE ITS upgrade
- DCA_{xv} < 70 μ m
- $|z_{vtx}| < 10 \text{ cm}$

K. Dehmelt

R&D Studies for the sPHENIX Time

Projection Chamber P. Garg

INTT

- 4 layers Si strips
- Use PHENIX FVTX electronics
- Pattern recognition, DCA, connect tracking systems, reject pile-up

TPC

- Radius 20–78 cm
- ~250 μm effective hit resolution
- Continuous (non-gated) readout
- Pattern recognition, momentum resolution, p_T 0.2-40 GeV/c

The intermediate tracking system of the sPHENIX detector at RHIC G. Mitsuka

Realistic Geometry for Tracking Coming Soon

Photon clustering algorithm

- Algorithm A
 - Cluster = contiguous towers E > E_{threshold}
- Algorithm B
 - Noise reduction → E > E_{threshold}
 - Neighboring towers which satisfy noise threshold = "isolated cluster"
 - Find "local max tower" and "peak area" around it
 - E_{tower} with contribution from 2+ peak areas divided into peak areas
 - Parameterized shower shape function
 - Redefine "core cluster" within cluster area as towers E_{sum}
 E_{threshold} of peak area

Algorithm A Algorithm B

